(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
*(0, x) → 0
*(x, 0) → 0
*(O(x), y) → O(*(x, y))
*(I(x), y) → +(O(*(x, y)), y)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
+(I(x), I(y)) →+ O(+(+(x, y), I(0)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [x / I(x), y / I(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
O(0') → 0'
+'(0', x) → x
+'(x, 0') → x
+'(O(x), O(y)) → O(+'(x, y))
+'(O(x), I(y)) → I(+'(x, y))
+'(I(x), O(y)) → I(+'(x, y))
+'(I(x), I(y)) → O(+'(+'(x, y), I(0')))
*'(0', x) → 0'
*'(x, 0') → 0'
*'(O(x), y) → O(*'(x, y))
*'(I(x), y) → +'(O(*'(x, y)), y)
-(x, 0') → x
-(0', x) → 0'
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1')))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
O(0') → 0'
+'(0', x) → x
+'(x, 0') → x
+'(O(x), O(y)) → O(+'(x, y))
+'(O(x), I(y)) → I(+'(x, y))
+'(I(x), O(y)) → I(+'(x, y))
+'(I(x), I(y)) → O(+'(+'(x, y), I(0')))
*'(0', x) → 0'
*'(x, 0') → 0'
*'(O(x), y) → O(*'(x, y))
*'(I(x), y) → +'(O(*'(x, y)), y)
-(x, 0') → x
-(0', x) → 0'
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1')))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
Types:
O :: 0':I:1' → 0':I:1'
0' :: 0':I:1'
+' :: 0':I:1' → 0':I:1' → 0':I:1'
I :: 0':I:1' → 0':I:1'
*' :: 0':I:1' → 0':I:1' → 0':I:1'
- :: 0':I:1' → 0':I:1' → 0':I:1'
1' :: 0':I:1'
hole_0':I:1'1_0 :: 0':I:1'
gen_0':I:1'2_0 :: Nat → 0':I:1'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
+',
*',
-They will be analysed ascendingly in the following order:
+' < *'
(8) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
-(
x,
0') →
x-(
0',
x) →
0'-(
O(
x),
O(
y)) →
O(
-(
x,
y))
-(
O(
x),
I(
y)) →
I(
-(
-(
x,
y),
I(
1')))
-(
I(
x),
O(
y)) →
I(
-(
x,
y))
-(
I(
x),
I(
y)) →
O(
-(
x,
y))
Types:
O :: 0':I:1' → 0':I:1'
0' :: 0':I:1'
+' :: 0':I:1' → 0':I:1' → 0':I:1'
I :: 0':I:1' → 0':I:1'
*' :: 0':I:1' → 0':I:1' → 0':I:1'
- :: 0':I:1' → 0':I:1' → 0':I:1'
1' :: 0':I:1'
hole_0':I:1'1_0 :: 0':I:1'
gen_0':I:1'2_0 :: Nat → 0':I:1'
Generator Equations:
gen_0':I:1'2_0(0) ⇔ 0'
gen_0':I:1'2_0(+(x, 1)) ⇔ I(gen_0':I:1'2_0(x))
The following defined symbols remain to be analysed:
+', *', -
They will be analysed ascendingly in the following order:
+' < *'
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol +'.
(10) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
-(
x,
0') →
x-(
0',
x) →
0'-(
O(
x),
O(
y)) →
O(
-(
x,
y))
-(
O(
x),
I(
y)) →
I(
-(
-(
x,
y),
I(
1')))
-(
I(
x),
O(
y)) →
I(
-(
x,
y))
-(
I(
x),
I(
y)) →
O(
-(
x,
y))
Types:
O :: 0':I:1' → 0':I:1'
0' :: 0':I:1'
+' :: 0':I:1' → 0':I:1' → 0':I:1'
I :: 0':I:1' → 0':I:1'
*' :: 0':I:1' → 0':I:1' → 0':I:1'
- :: 0':I:1' → 0':I:1' → 0':I:1'
1' :: 0':I:1'
hole_0':I:1'1_0 :: 0':I:1'
gen_0':I:1'2_0 :: Nat → 0':I:1'
Generator Equations:
gen_0':I:1'2_0(0) ⇔ 0'
gen_0':I:1'2_0(+(x, 1)) ⇔ I(gen_0':I:1'2_0(x))
The following defined symbols remain to be analysed:
*', -
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
*'(
gen_0':I:1'2_0(
n41051_0),
gen_0':I:1'2_0(
0)) →
gen_0':I:1'2_0(
0), rt ∈ Ω(1 + n41051
0)
Induction Base:
*'(gen_0':I:1'2_0(0), gen_0':I:1'2_0(0)) →RΩ(1)
0'
Induction Step:
*'(gen_0':I:1'2_0(+(n41051_0, 1)), gen_0':I:1'2_0(0)) →RΩ(1)
+'(O(*'(gen_0':I:1'2_0(n41051_0), gen_0':I:1'2_0(0))), gen_0':I:1'2_0(0)) →IH
+'(O(gen_0':I:1'2_0(0)), gen_0':I:1'2_0(0)) →RΩ(1)
+'(0', gen_0':I:1'2_0(0)) →RΩ(1)
gen_0':I:1'2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
-(
x,
0') →
x-(
0',
x) →
0'-(
O(
x),
O(
y)) →
O(
-(
x,
y))
-(
O(
x),
I(
y)) →
I(
-(
-(
x,
y),
I(
1')))
-(
I(
x),
O(
y)) →
I(
-(
x,
y))
-(
I(
x),
I(
y)) →
O(
-(
x,
y))
Types:
O :: 0':I:1' → 0':I:1'
0' :: 0':I:1'
+' :: 0':I:1' → 0':I:1' → 0':I:1'
I :: 0':I:1' → 0':I:1'
*' :: 0':I:1' → 0':I:1' → 0':I:1'
- :: 0':I:1' → 0':I:1' → 0':I:1'
1' :: 0':I:1'
hole_0':I:1'1_0 :: 0':I:1'
gen_0':I:1'2_0 :: Nat → 0':I:1'
Lemmas:
*'(gen_0':I:1'2_0(n41051_0), gen_0':I:1'2_0(0)) → gen_0':I:1'2_0(0), rt ∈ Ω(1 + n410510)
Generator Equations:
gen_0':I:1'2_0(0) ⇔ 0'
gen_0':I:1'2_0(+(x, 1)) ⇔ I(gen_0':I:1'2_0(x))
The following defined symbols remain to be analysed:
-
(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':I:1'2_0(
n46412_0),
gen_0':I:1'2_0(
n46412_0)) →
gen_0':I:1'2_0(
0), rt ∈ Ω(1 + n46412
0)
Induction Base:
-(gen_0':I:1'2_0(0), gen_0':I:1'2_0(0)) →RΩ(1)
gen_0':I:1'2_0(0)
Induction Step:
-(gen_0':I:1'2_0(+(n46412_0, 1)), gen_0':I:1'2_0(+(n46412_0, 1))) →RΩ(1)
O(-(gen_0':I:1'2_0(n46412_0), gen_0':I:1'2_0(n46412_0))) →IH
O(gen_0':I:1'2_0(0)) →RΩ(1)
0'
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(15) Complex Obligation (BEST)
(16) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
-(
x,
0') →
x-(
0',
x) →
0'-(
O(
x),
O(
y)) →
O(
-(
x,
y))
-(
O(
x),
I(
y)) →
I(
-(
-(
x,
y),
I(
1')))
-(
I(
x),
O(
y)) →
I(
-(
x,
y))
-(
I(
x),
I(
y)) →
O(
-(
x,
y))
Types:
O :: 0':I:1' → 0':I:1'
0' :: 0':I:1'
+' :: 0':I:1' → 0':I:1' → 0':I:1'
I :: 0':I:1' → 0':I:1'
*' :: 0':I:1' → 0':I:1' → 0':I:1'
- :: 0':I:1' → 0':I:1' → 0':I:1'
1' :: 0':I:1'
hole_0':I:1'1_0 :: 0':I:1'
gen_0':I:1'2_0 :: Nat → 0':I:1'
Lemmas:
*'(gen_0':I:1'2_0(n41051_0), gen_0':I:1'2_0(0)) → gen_0':I:1'2_0(0), rt ∈ Ω(1 + n410510)
-(gen_0':I:1'2_0(n46412_0), gen_0':I:1'2_0(n46412_0)) → gen_0':I:1'2_0(0), rt ∈ Ω(1 + n464120)
Generator Equations:
gen_0':I:1'2_0(0) ⇔ 0'
gen_0':I:1'2_0(+(x, 1)) ⇔ I(gen_0':I:1'2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
*'(gen_0':I:1'2_0(n41051_0), gen_0':I:1'2_0(0)) → gen_0':I:1'2_0(0), rt ∈ Ω(1 + n410510)
(18) BOUNDS(n^1, INF)
(19) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
-(
x,
0') →
x-(
0',
x) →
0'-(
O(
x),
O(
y)) →
O(
-(
x,
y))
-(
O(
x),
I(
y)) →
I(
-(
-(
x,
y),
I(
1')))
-(
I(
x),
O(
y)) →
I(
-(
x,
y))
-(
I(
x),
I(
y)) →
O(
-(
x,
y))
Types:
O :: 0':I:1' → 0':I:1'
0' :: 0':I:1'
+' :: 0':I:1' → 0':I:1' → 0':I:1'
I :: 0':I:1' → 0':I:1'
*' :: 0':I:1' → 0':I:1' → 0':I:1'
- :: 0':I:1' → 0':I:1' → 0':I:1'
1' :: 0':I:1'
hole_0':I:1'1_0 :: 0':I:1'
gen_0':I:1'2_0 :: Nat → 0':I:1'
Lemmas:
*'(gen_0':I:1'2_0(n41051_0), gen_0':I:1'2_0(0)) → gen_0':I:1'2_0(0), rt ∈ Ω(1 + n410510)
-(gen_0':I:1'2_0(n46412_0), gen_0':I:1'2_0(n46412_0)) → gen_0':I:1'2_0(0), rt ∈ Ω(1 + n464120)
Generator Equations:
gen_0':I:1'2_0(0) ⇔ 0'
gen_0':I:1'2_0(+(x, 1)) ⇔ I(gen_0':I:1'2_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
*'(gen_0':I:1'2_0(n41051_0), gen_0':I:1'2_0(0)) → gen_0':I:1'2_0(0), rt ∈ Ω(1 + n410510)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
-(
x,
0') →
x-(
0',
x) →
0'-(
O(
x),
O(
y)) →
O(
-(
x,
y))
-(
O(
x),
I(
y)) →
I(
-(
-(
x,
y),
I(
1')))
-(
I(
x),
O(
y)) →
I(
-(
x,
y))
-(
I(
x),
I(
y)) →
O(
-(
x,
y))
Types:
O :: 0':I:1' → 0':I:1'
0' :: 0':I:1'
+' :: 0':I:1' → 0':I:1' → 0':I:1'
I :: 0':I:1' → 0':I:1'
*' :: 0':I:1' → 0':I:1' → 0':I:1'
- :: 0':I:1' → 0':I:1' → 0':I:1'
1' :: 0':I:1'
hole_0':I:1'1_0 :: 0':I:1'
gen_0':I:1'2_0 :: Nat → 0':I:1'
Lemmas:
*'(gen_0':I:1'2_0(n41051_0), gen_0':I:1'2_0(0)) → gen_0':I:1'2_0(0), rt ∈ Ω(1 + n410510)
Generator Equations:
gen_0':I:1'2_0(0) ⇔ 0'
gen_0':I:1'2_0(+(x, 1)) ⇔ I(gen_0':I:1'2_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
*'(gen_0':I:1'2_0(n41051_0), gen_0':I:1'2_0(0)) → gen_0':I:1'2_0(0), rt ∈ Ω(1 + n410510)
(24) BOUNDS(n^1, INF)